
Chapter 1

Writing Your
First Program

1-2

Writing Your First Program

Your First Program
This chapter presents the first Dialog Box program that you will create. Designing and
implementing Dialog Box programs involves two steps: The visual DCL programming
step and the AutoLISP code programming step.

Visual DCL Programming Step

Dialog boxes are written in the Dialog Control Language (DCL). In this step, you use
a text editor to create an ASCII text file with the .DCL extension. This file defines the
appearance and content of the dialog box.

Size and positioning of the information contained within the dialog box are controlled
automatically. A minimum amount of positioning information is required.

AutoLISP Code Programming Step

The DCL file defines the parts of the dialog box. An application is required to control
the use and behavior of the dialog box. Both AutoLISP and ADS provide functions to
program and control dialog boxes. This book focuses on using AutoLISP to control
the dialog boxes. AutoLISP provides a package of functions known as the Program-
mable Dialogue Box (PDB) facility. In this step, you use a text editor to create an
ASCII text file with the .LSP extension which contains the PDB functions.

Creating a Working Directory
Before writing the actual programs, create a subdirectory to store the .DCL and .LSP
files. From this point, we assume that you have created a directory called
C:\PROGRAMS on your local drive. All files will be saved in this directory.

To create the working directory:

At the DOS prompt C:\> type CD\ <return>

1-3

At the DOS prompt C:\> type MD PROGRAMS <return>

Or use the File Manager program of windows to create the working directory.

The Hello Program
A DCL file contains the description and layout of the dialog box on all platforms.
Differences in appearance depend on the platform’s graphical user interface (GUI).
Executing the Hello program does the following:

Typing Hello at the AutoCAD Command prompt displays the dialog box as
shown in Figure 1.1. This dialog contains three command buttons (Display
Hello, Clear, and OK) and an empty text tile.

Figure 1.1. The Hello program.

Selecting the Display Hello button, displays the text Hello World! in the text
tile (see Figure 1.2).

1-4

Writing Your First Program

Figure 1.2. Displaying the text inside the text tile.

To clear the text, select the Clear button.

Select OK, to exit the program.

Creating the Program Files
Now that you know what the Hello program is supposed to do, let’s write the program.

The very first thing you must do is write the code for the DCL file and the program
code for the AutoLISP file. This is accomplished in several ways. You may choose to
use the DOS editor outside of AutoCAD or from within AutoCAD. If you are using
the windows version of AutoCAD, you may use the Notepad, Write, Word or another
word processor or text editor.

Regardless of the editor you choose, be sure to save the program files in an ASCII or
non-document mode. Do not convert any program or DCL file to a document or word
processor format. Always save the files in a text format.

From within AutoCAD Release 12 and Release 13 you can type EDIT to start the text
editor. If AutoCAD returns Unknown command after typing EDIT, refer to the
AutoCAD documentation for adding the EDIT command to your ACAD.PGP file.

1-5

When the text refers to starting the text editor, we are referring to starting the editor
from within AutoCAD.

When writing the program you will always have at least two files: the dialog .DCL
definition file and the AutoLISP .LSP program file. Be sure to save these files in the
C:\PROGRAMS directory, whether you are using a DOS test editor or a windows test
editor. From this point on we assume that these files are located in this directory and
will instruct AutoLISP to look for these files in this location using a path statement
C:/PROGRAMS/ for loading the DCL files and other external data files.

The Visual Implementation
of the Hello Program

Use the following steps to create the HELLO.DCL file.

Start AutoCAD in the normal manner with a new drawing. This places you
inside the AutoCAD drawing editor with a new drawing.

Start the text editor.

Save the file as HELLO.DCL to the C:\PROGRAMS directory.

Write code inside the HELLO.DCL dialog box.

Save the .DCL file.

Start a new file from within the text editor.

Write code inside the LOADDCL.LSP AutoLISP file.

Save the file a LOADDCL.LSP and exit the text editor to return to
AutoCAD.

1-6

Writing Your First Program

Load the AutoLISP program LOADDCL using APPLOAD.

Execute LOADDCL to check the dialog box layout.

This chapter is not a typical chapter. This chapter teaches you the two steps involved
in creating and controlling a dialog box. It is the purpose of the following chapters to
teach you how to write the code for the DCL and AutoLISP files for specific tiles.
Each chapter gives examples of how the DCL code is written for the specific tile, and
how the tile is controlled from within an AutoLISP program.

When the dialog box is complete, it should look like the one shown in Figure 1.3.

Figure 1.3. The Hello program dialog box.

The Code Inside the
HELLO.DCL File

You may type the code for the DCL file as each step is presented here or type the
entire code from the figure shown at the end of this section. The complete code is
shown in Figure 1.5.

1-7

Type these two comment lines to identify the DCL file and its purpose:

// HELLO.DCL
// Display Hello World!

Always use comments to identify the DCL file name and how the file operates. This is
useful for printing the code and modifying the file at a later date. Comments are
preceded by two forward slashes (//) . Anything that appears after the // and the
end of the line is ignored. You may also use C language style comments of the form
/* comment text */ . The starting /* and ending */ can be on separate
lines. An example of this using the comments above is:

/* HELLO.DCL
Display Hello World! */

Add a blank line after the comments above and type the next line to set the DCL audit
level to three (3):

dcl_settings : default_dcl_settings { audit_level = 3; }

Syntax errors, misuse of attributes or other errors are checked the first time a DCL file
is loaded. Errors encountered are written to the file ACAD.DCE, an alert box displays,
and the DCL file does not load. To correct the error, edit the ACAD.DCE file for
possible warnings, error messages, and redundant attribute keys.

Before actual coding of the dialog box, prepare a sketch or an AutoCAD drawing of
the dialog to get the basic design, layout and appearance you are looking for. This
allows you to layout and revise your design before writing the actual code, which
saves considerable time. It is not unusual to spend one to three hours on the design
and coding of a dialog.

During development of the DCL file, keep the audit level at 3 and remove the
dcl_settings line before shipping to users. See the Table 1.1 for a definition of
the audit levels.

1-8

Writing Your First Program

Table 1.1. Semantic auditing levels.

Add a blank line then type the next two lines to declare the dialog tile and add a label
for the dialog title:

hello : dialog {
label = “The Hello Dialog”;

This code names the dialog and begins the dialog definition. A colon : indicates the
beginning of a tile definition. The name of the dialog tile is next after the colon :
separated by a space. A curly brace indicates the beginning of the dialog definition
section. After defining all the tiles within the dialog definition, a closing curly brace
ends the dialog definition section. The closing curly brace for the code above will be
added after defining the other tiles.

Attributes, such as the label attribute above, are separated from their values by an
equal sign (=) with a space on each side of the equal sign. Attribute lines are always
terminated with a semicolon. A missing semicolon or curly brace will cause an error.

DCL Syntax and Format

Proper syntax and format of a DCL file is important to prevent errors and enable
readability of the DCL file. This is similar to the formatting of an AutoLISP file. Use
indentation to indicate a tile definition indenting the tile’s attributes an additional two
spaces. Try to format your DCL files as the examples shown in this chapter. Remem-
ber to add a semicolon at the end of each attribute and a curly brace at the end of a tile
definition.

Level Description

0 No checking. Use if the DCL files have been audited.

1 Errors. Finds DCL bugs that may cause AutoCAD to terminate.

2 Warnings. Finds DCL bugs that result in dialogs with udesired layout and behaviour.

3 Hints. Finds redundant attribute definitions.

1-9

For additional reference, open some of the AutoCAD DCL files. Do not alter or
change these files as this can cause AutoCAD to run incorrectly.

Dialog Tile
A dialog tile is the primary tile that defines the dialog box. The dialog box name
appears before the dialog tile is declared separated by a space, a colon :, a space,
dialog, a space, and a curly brace. A dialog’s name is case sensitive and must be
called from the LISP program exactly as it appears in the DCL file. The name hello is
different from the name Hello or HELLO. All other tile definitions will occur within
the curly braces of the dialog tile, laid out within a column format.

DCL Syntax Example:

hello : dialog {hello : dialog {hello : dialog {hello : dialog {hello : dialog {
label = “The Hello Dialog”;
initial_focus = “cmd_hello”;
tile definitions....tile definitions....tile definitions....tile definitions....tile definitions....

}}}}}

A dialog box named hellohellohellohellohello is declared, labeled, with the initial focus set to the
cmd_hello key, and all tiles are listed between the curly braces of the dialog tile
definition section. Attributes may be associated with each tile depending on the
specific needs of the individual tile. Attribute names are case-sensitive, so attributes
named Label or LABEL will not have an effect on the label attribute of the tile.

Any combination of attributes may be included in the tile definition. Attributes specific
to a tile are also described after the DCL syntax example. Attributes for the dialog
tile are described as shown below:

1-10

Writing Your First Program

Attributes specific to the dialog tile:

initial_focus Specifies the key of the tile that receives the initial keyboard
focus.

label An optional label displayed as a title in the top border of the
dialog. The title may be changed at runtime using the set_tile
function.

value This attribute overrides that of the label and specifics a string to
display as the optional dialog box title. Both a label and a value
attribute should not be specified.

A dialog tile is laid out in a column format. Additional tiles within the dialog box
description are placed below the previous tile. All other tile descriptions occur within
the curly braces of the dialog definition tile section.

Type the next five lines to declare a text tile:

Next, type the following code below the label attribute of the dialog tile, to add the text
tile definition. The text tile is considered a child tile definition of the dialog. Children
tiles are not named as the dialog tile above, but are preceded by a colon : and the tile
attributes contained within the curly braces.

: text {
label = “”;
key = “txt_hello”;
alignment = centered;

}

A text tile begins with a colon : followed by a space, the tile name text , followed by
a space and the opening curly brace. The text tile attributes are added next, followed
by the closing curly brace to end the tile definition. The label attribute value is left
blank so the program can add the required text within the tile. A unique name,
“txt_hello” is assigned to the text tile key attribute. The tiles alignment is set to
centered.

1-11

A text tile is one of the informative tiles used to display a text string in the dialog
box. Text tiles may be used in combination with the other text tiles text_part ,
concatenation , and paragraph , to display large blocks of text within para-
graphs. These tiles are described in later chapters.

TEXT Tile
A text tile is a useful way to display feedback about user actions. A static message
may be defined in the label attribute or the message may change during runtime by
leaving the label blank. A text tile’s width is determined by the larger of the label
attribute or the width attribute. At lease one of these attributes must be specified for
the tile width.

DCL Syntax Example:

: text {
label = “This is a text tile”;
key = “txt_text1”
alignment = centered;

}

If the alignment tile is not specified the default text alignment is left. The value for the
key attribute is a quoted string that must be unique for each tile definition within the
dialog. Key values used in one dialog definition file may be reused in another dialog
definition file.

Text Tile Attributes:

alignment Values are left, right or centered.

fixed_height Values or true or false. If true, the tile does not fill the extra
space available in the layout/alignment process.

1-12

Writing Your First Program

fixed_width Values or true or false. If true, the tile does not fill the extra
space available in the layout/alignment process.

height Specifies the height of the tile in character height units.

is_bold Values are true or false. If true, the text is displayed in bold
characters. This attribute is not supported on all platforms.

key A key is a quoted string (a unique name) that the application
program uses to reference the tile.

label Optional text displayed within the text tile.

value A string to display in the text tile.

width Specifies the width of the tile in character width units. This is a
minimum width and can be expanded during the layout/align
ment process.

Type the next seven lines of code to declare a button within a row:

Tiles within a row are placed horizontally as they are encountered within the DCL file
between the curly braces, from left to right, of the row tile definition. Tiles within the
curly braces of the row are considered to be the children of the row tile. Attributes
for the row tile apply to the tiles defined within the row tile section.

: row {
: button {
 label = “Display Hello”;

 key = “cmd_hello”;
 width = 18;
 mnemonic = “D”;

}//button

1-13

A closing curly brace for the row tile is added after the next button is declared. A
row is one of the predefined tile clusters which provides a way of grouping related
tiles together. The row tile cluster is described before the next button tile is added.

ROW Tile Cluster

Tile clusters may not be selected themselves, only tiles within the clusters. Clusters do
not have assigned actions except radio_rows and radio_columns . Row
attributes apply to the children tiles placed within the rows. Rows may contain any
type of tile including columns and other rows.

Attributes described below for the row tile cluster also apply to all tile clusters and
will not be repeated for the remaining tile cluster descriptions in the following chap-
ters.

DCL Syntax Example:

:row {
fixed_width = true;
alignment = centered;
: retirement_button {

label = "Apply";
key = "accept";
is_default = true;

}
: spacer { width = 2; }
cancel_button;
: spacer { width = 2; }
: retirement_button {

label = "Another";
key = "another";

}
: spacer { width = 2; }
help_button;

}//row

1-14

Writing Your First Program

The attributes fixed_width and alignment apply to all the tiles placed within
the row tile definition section.

Attributes:

alignment Values are top, centered, and bottom. This attribute
specifies the vertical positing of the child tiles within the
cluster.

children_alignment Values are top, centered, and bottom. This attribute
controlsthe horizontal and vertical positioning when the
tiles do not have specific alignment values.

children_fixed_height Values are either true or false. Prevents a tile from
growing during the layout process. Has no effect on tiles
with a specific fixed_height value.

children_fixed_width Values are either true or false. Prevents a tile from
growing during the layout process. Has no effect on tiles
with a specific fixed_width value.

fixed_height Values are true or false. Prevents a tile from growing
during the layout process. Has no effect on tiles with a
specific fixed_height value.

fixed_width Values are true or false. Prevents a tile from growing
during the layout process. Has no effect on tiles with a
specific fixed_width value.

height Values are an integer or a real. Specifies the tile height
in character height units (the height of the screen
characters including line spacing).

width Values are an integer or a real. Specifies the tile width in
character width units.

1-15

Figure 1.4 shows five buttons defined within a row.

Figure 1.4. Buttons within a row.

BUTTON Tile
A buttonbuttonbuttonbuttonbutton represents a tile that the user can push to make selections such as exiting
or canceling a dialog box. Actions that are immediately visible to the user can be
executed using a buttonbuttonbuttonbuttonbutton tile. All dialogs require at least one button to close or retire
the dialog. This can be an OK button or a user defined button equal to an OK button.
If this button is omitted, the user is trapped in the dialog and cannot exit until the
computer is restarted.

When the user selects a button an associated action is executed. The action is defined
in the action_tile attribute for the button tile.

DCL syntax Example:

: button {
label = “Button #1”;
key = “cmd_button1”;

}

1-16

Writing Your First Program

Button Tile Attributes:

action Specifies an AutoLISP expression to execute when this tile is
selected. Since all tiles can have only one action an action_tile
statement in the .LSP file overrides the action attribute in the
.DCL file.

alignment Values include left, right and centered for buttons within a
column and top, bottom or centered for rows.

fixed_height Values are true or false. If true the button does not fill the extra
space during the layout/alignment process.

fixed_width Values are true or false. If true the button does not fill the extra
space during the layout/alignment process.

height Specifies the height of the button in character height units.

is_cancel Values are true or false. Specifies whether this button is selected
when the user presses Ctrl + C or Esc. The Cancel button is
usually assigned this attribute.

is_default Values are true or false. Specifies whether this button is selected
when the user presses the Enter key. The OK button is usually
assigned this attribute.

is_enabled Values are true or false. If false the tile is initially grayed out.

is_tab_stop Values are true or false. If true the tile receives keyboard focus
when the user moves to the tile using the tab key.

key A quoted string (a unique name) to reference the button tile.

label Specifies the text that appears inside the button

1-17

mnemonic A mnemonic attribute designates a keyboard mnemonic for the
tile. The mnemonic character is underlined in the tile’s label.

width Specifies the width of the button in character width units.

Type the following six lines of code to declare another button and end the row:

Add the code for the Clear button, then close the row tile cluster adding the closing
curly brace.

: button {
label = “Clear”;
key = “cmd_clear”;
width = 10;
mnemonic = “C”;

}//button
}//row

This ends the two buttons within the row. The closing curly brace for the row should
align with the colon for the row tile definition added above.

Type the next line to declare the PDB predefined tile OK:

The OK button may be used alone, as shown below or in a subassembly of OK and
Cancel. Most dialogs include an OK and Cancel button. An “information only” dialog
generally has a single OK button.

ok_only;

This tile contains a button with the label “OK” and the key “accept,” and sets an
attribute called “is_default” to true. The definition for this predefined tile is stored in
the base.dcl file provided by AutoCAD.

1-18

Writing Your First Program

Type the next line to add the closing curly brace:

}//dialog hello

This is the final line of code in the HELLO.DCL file, which describes the layout of the
hello dialog. Check your code carefully with the code shown on this page before
saving. If the code is correct, save the file and proceed to enter the code for the dialog
checking program.

Your code should now appear as shown in Figure 1.5.

Figure 1.5. Hello DCL code.

// HELLO.DCL
// Display Hello World!

dcl_settings : default_dcl_settings { audit_level = 3; }

hello : dialog {
label = “The Hello Dialog”;
: text { label = “”;

key = “txt_hello”;
alignment = centered;

}
: row {

: button { label = “Display Hello”;
key = “cmd_hello”;
width = 18;
mnemonic = “D”;

}
: button { label = “Clear”;

key = “cmd_clear”;
width = 10;
mnemonic = “C”;

}
}//row

ok_only;
}//dialog hello

1-19

After verifying the code above, save the DCL file. The above code was written in the
DCL language. A program to check the appearance of the DCL file will now be
written in AutoLISP. Start a new file and save it as LOADDCL.LSP .

This program is used to check the dialog box appearance and functionality. It is best to
check the code for the dialog and its appearance before writing the AutoLISP code to
control the dialog box. Use this program to load and check all dialog boxes before
writing the AutoLISP program code. Be sure to type this code exactly as it appears or
use the code from the diskette. If you encounter any problems, refer to the Chapter on
Debugging. The AutoLISP code for this program will not be explained at this time as
this program is only for the purpose of loading the DCL file.

Figure 1.6. LOADDCL.LSP Type the code exactly as follows:

;;; LOADDCL.LSP
;;; Loads, displays, activates and unloads a dialog box of
;;; the same name. Used to verify dialog box design.

(defun C:LOADDCL (/ DCL_ID DLBNAME)
(setq DLBNAME (getstring “\nDCL File Name: “))
(if (findfile (strcat “C:/PROGRAMS/” DLBNAME “.DCL”))

(progn
(setq DCL_ID

(load_dialog (strcat “C:/PROGRAMS/” DLBNAME))
(if (not (new_dialog DLBNAME DCL_ID)) (exit))

(action_tile “accept” “(done_dialog)”)
(action_tile “cancel” “(done_dialog)”)

(start_dialog)
(unload_dialog DCL_ID)

);;progn
(alert

(strcat “Unable to display < “ DLBNAME “ > Dialog!”))
);;if

)

1-20

Writing Your First Program

Now, save the file and exit the text editor to check the dialog box code and design. You
should now be returned to AutoCAD. From within AutoCAD, at the command
prompt, execute the Appload program.

Command: APPLOAD <return>APPLOAD <return>APPLOAD <return>APPLOAD <return>APPLOAD <return>

The APPLOAD dialog box appears as shown in Figure 1.7.

Figure 1.7. Appload dialog box.

When the dialog first appears it may be empty or list some files in the Files to load:
list box. Select the File... button at the top right to open the File selection dialog
Figure 1.8.

Figure 1.8. Appload File Selection dialog.

1-21

This dialog displays directories in the list box on the right and files names on the left.
Move to the C:\PROGRAMS subdirectory and select the file LOADDCL.LSP then
click OK . The dialog closes and the file is now listed and highlighted in the APP-
LOAD dialog. Select the Load button at the bottom left of the dialog. If the Load
button is grayed out, click on the LOADDCL.LSP file; the Load button should now be
accessible.

This loads the LOADDCL file and checks it for any errors. If any errors are encoun-
tered refer to the Chapter on Debugging. You are now ready to verify the layout and
code for the HELLO dialog. At the AutoCAD Command: prompt type:

Command: LOADDCL <return>LOADDCL <return>LOADDCL <return>LOADDCL <return>LOADDCL <return>
DCL File Name: hello <return>hello <return>hello <return>hello <return>hello <return>

Remember to type the dialog box name in lower case letters exactly as it is typed in
the HELLO.DCL file. The dialog box displays, and should look like the one shown in
Figure 1.1. If the dialog box did not show and you received an alert box, correct the
errors indicated or check the ACAD.DCE file for possible errors.

No action will occur if you click on the buttons as no functions have been assigned to
the tiles.

Click on OK to clear the dialog box.

Always use the LOADDCL.LSP routine to verify dialog box design and check for
possible syntax errors before writing the program to control the dialog tiles. Often, it
may take several attempts to correct the DCL syntax and make the dialog box design
functional and acceptable.

1-22

Writing Your First Program

Building DCL files
from Tables

You will be instructed to create many Dialog boxes throughout this book. However, to
gain experience at learning the DCL language, try to create the DCL files from the
DCL File Definition table. A DCL File Definition table is a table that contains the tile
references that define the dialog box. Your job is to follow the table, line by line, and
to write the code for the DCL file in the proper format. Table 1.2 is the DCL File
Definition table for the HELLO.DCL dialog box.

The DCL File Definition table is made up of three sections: Tile Reference, Attribute,
and Value.

Tile Reference This shows the basic tile types as predefined by the PDB facility.
This includes buttons, toggles, tile clusters, text clusters, and
edit boxes that are combined to form dialog boxes. A tile
reference has the form:

: tile name {
attribute = value;
.....

}

The tile name is the name of a predefined tile as defined by the PDB facility listed in
the Tile Reference part of the table. A colon : indicates the beginning of a tile defini-
tion. The name of the tile is next after the colon : separated by a space. A curly brace
indicates the beginning of the tile definition section. A closing curly brace is added
after the attributes.

Attribute A tile’s attribute defines its physical appearance and function.
Examples include key, label, height, width, enabled, and dis
abled.

Value The value assigned to the tile attribute must be of a specific type,
integer, real, string or a reserved word.

1-23

Table 1.2. The DCL file definition table of the HELLO dialog box.

Tile Reference Attribute Value

dialog label “The Hello Program”

text key “txt_hello”
label “”
alignment centered

row {

button label “Display Hello”
key “cmd_hello”
width 18
mnemonic “D”

button label “Clear”
key “cmd_clear”
width 10
mnemonic “C”

}//row

ok_only

Entering the AutoLISP Code
of the Hello Program

You are now ready to write the code to control the HELLO dialog. Start the text editor
and type the following code exactly as shown. Or, you may type the code as each line
is explained in the next section.

1-24

Writing Your First Program

Start the text editor and type the code inside the HELLO program.

Save the file as HELLO.LSP and exit the text editor.

Load the HELLO program file in AutoCAD using APPLOAD.

Execute the program at the AutoCAD Command prompt.

The HELLO Program

;;; HELLO.LSP
;;; Displays HELLO WORLD! in the text tile.

(defun C:HELLO (/ CMD:HELLO CMD:CLEAR DCL_ID)

(defun CMD:HELLO ()
(set_tile “lst_hello” “HELLO WORLD!”))

(defun CMD:CLEAR () (set_tile “lst_hello” “”))

(setq DCL_ID (load_dialog “HELLO.DCL”))

(if (not (new_dialog “hello” DCL_ID)) (exit))

(action_tile “cmd_hello” “(cmd:hello)”)
(action_tile “cmd_clear” “(cmd:clear)”)

(action_tile “accept” “(done_dialog)”)

(start_dialog)

(unload_dialog DCL_ID)

(princ)

)//defun of hello

(prompt “\nType < HELLO > to execute.”)
(princ)

1-25

The AutoLISP Code
Inside the HELLO Program

Type the next two lines to ass comments to identify the LSP file and its purpose:

;;; HELLO.LSP
;;; Displays the text HELLO WORLD! in a text tile.

Comments within an AutoLISP file are preceded by one or more semicolons.
AutoLISP ignores any data on the same line following a semicolon. Comments may
start at the beginning of a line (as shown above) or after an AutoLISP expression.
Examples of this include:

(setq X 1) ;set X to 1

For AutoCAD/AutoLISP Release 13, comments may be enclosed in the string ;|...|;.
The comments may start on one line and may end after several lines. Examples of this
format include:

;| HELLO.LSP
Displays the text HELLO WORLD! in a text tile. |;

(setq X ;| set X to 1 |; 1.0)

(setq X 1) ;| set X to 1
This is the default value for X |;

Use caution adding comments in this manner as a missing semicolon will cause an
error. Also, if your program must be compatible with Release 12, use a semicolon as
shown above.

Type the next line to define the function HELLO:

(defun C:HELLO (/ CMD:HELLO CMD:CLEAR DCL_ID)

1-26

Writing Your First Program

User defined functions are created using the internal AutoLISP function DEFUN,
which is short for DEfine FUNction. New functions and commands are added to
AutoCAD by using DEFUN to define and implement those commands and functions.
A DEFUN function has the syntax:

(defun NAME ([ARGUMENTS] / [LOCAL VARIABLES])
([expressions]......)
([expressions]......)

)

The NAME portion is simply the name of the function you are defining. The [ARGU-
MENTS] following the function name are independent variables that take the values
given them when the function is called. An optional “/” forward slash may follow and
the local variables declared. Not all functions have [ARGUMENTS] and may only
have [LOCAL VARIABLES].

Local and Global Variables
A [LOCAL VARIABLE] will only have a value bound to it while the function or
program is executing. Once the function has finished the value of the [LOCAL VARI-
ABLE] is set to nil. Variables that are not declared in this section are considered global
and retain their value after the function has executed.

By retaining their values, global variables may be used by other functions. If no
[ARGUMENTS] or [LOCAL VARIABLES] are declared, you must supply an empty
set of parentheses () after the function name. For example:

Function with no arguments or local variables:

(defun NEWFUNC () (expressions........))

Function with two arguments and no local variables:

(defun NEWFUNC (A B) (expressions........))

1-27

Function with no arguments and two local variables:

(defun NEWFUNC (/ C D) (expressions........))

Function with two arguments and two local variables:

(defun NEWFUNC (A B / C D) (expressions........))

WARNING: Never use the name of an AutoCAD command built-in or external as the
name of a user defined function. This makes the built-in function inaccessible.

Express ions
One or more [EXPRESSIONS...] may follow the [ARGUMENTS] and [LOCAL
VARIABLES] after the defun function. These expressions are evaluated when the
function is called. This function doubles any number passed to it as the (NUM)
argument.

Command: (defun DOUBLE (NUM) (* NUM 2))(defun DOUBLE (NUM) (* NUM 2))(defun DOUBLE (NUM) (* NUM 2))(defun DOUBLE (NUM) (* NUM 2))(defun DOUBLE (NUM) (* NUM 2))

This function has one [ARGUMENT] and no [LOCAL VARIABLES] . To call the
function and double the number 12, you would type:

Command: (DOUBLE 12)(DOUBLE 12)(DOUBLE 12)(DOUBLE 12)(DOUBLE 12)
LISP returns: 2424242424

User Defined Commands
New commands are added to AutoCAD using a “C:” before the user defined func-
tion name after the defun. The “C:” is not a reference to a disk drive, but a special
prefix that denotes a command line function. The [ARGUMENT] list must be nil, but

1-28

Writing Your First Program

[LOCAL VARIABLES] are permitted. Here is the same program, now defined as an
AutoCAD command, named DOUBLE:

(defun C:DOUBLE (/ NUM DNUM)
(setq NUM (getreal “\nEnter Number to Double: “))
(setq DNUM (* NUM 2))
(prompt

(strcat “\nDoubled number is < “ (rtos DNUM 2 2) “ >”))
)

This command has two local variables NUM and DNUM. The number to double is
now requested from the user. Notice the program as a function before must be en-
closed in parenthesis when executed. As an AutoCAD command, the program is
executed from the AutoCAD Command: prompt by typing the command name
DOUBLE and pressing return.

Type the next line of code to define the CMD:HELLO function:

You may also define a function within another function or command. This is often
referred to as a subroutine. A subroutine may perform a specific task over and over
again. Subroutines may be created as a stand alone function, available to other
programs, and located in the ACAD.LSP file. This allows access to the subroutine
from any program you are using. Subroutines that perform a specific task, or are
never used by another program, should be defined within the program itself as in this
case.

The CMD:HELLO subroutine performs a specific task as does the CMD:CLEAR
function, and is included within the HELLO program. Add a blank line then type this
function on the next line:

(defun CMD:HELLO () (set_tile “txt_hello” “HELLO WORLD!”))

Short, user defined functions, may be typed on a single line. This user defined function
adds the text HELLO WORLD! to the text tile with the attribute key value
“txt_hello” .

1-29

SET_TILE Function

Use the set_tile function for setting the initial value of a tile or for changing the value
during program execution. Syntax for the set_tile function is:

(set_tile KEY VALUE)

The KEY argument is a string that represents the KEY value for the tiles’s key attribute
as specified in the DCL file. The VALUE argument is a string that specifies the new
value assigned the tile. This value is different for different types of tiles. Refer to the
VALUE attributes for each specific tile for this argument.

Add a blank line then type the next line of code to define the CMD:CLEAR function:

(defun CMD:CLEAR () (set_tile “txt_hello” “”))

The CMD:CLEAR function clears the text tile when the Clear button on the dialog
is selected.

Displaying the dialog box involves several steps. A DCL file must first be loaded. Use
the load_dialog function to load the DCL file into memory. Add a blank line and type
the next line of code:

(setq DCL_ID (load_dialog “C:/PROGRAMS/HELLO.DCL”))

The SETQ function is discussed before the LOAD_DIALOG function.

SETQ Function

This is the basic assignment function which assigns a value to a variable or a symbol.
In AutoLISP, variables and symbols store values accessed by programs. Variables are
user defined and refer to program data. The values of variables may change during
program execution. The syntax for the SETQ function is:

(setq VARIABLE1 VALUE1 [VARIABLE2 VALUE2]....)

1-30

Writing Your First Program

A single SETQ expression may set any number of variables. A variables’ value may
also be set to the value of another AutoLISP expression within the SETQ expression.
In the program code above the variable DCL_ID is assigned the DCL identification
number for the loaded dialog box calling the (LOAD_DIALOG) function.

NOTE: For ease of reading an AutoLISP program, type AutoLISP expressions in
lowercase characters and program variables in uppercase characters.

LOAD_DIALOG Function

Code within a DCL file must be loaded into memory before AutoLISP can display the
dialog box. LOAD_DIALOG opens the specified DCL file and reads the tile descrip-
tions into memory. Syntax for LOAD_DIALOG is:

(load_dialog DCLFILENAME)

The DCLFILENAME argument is a string containing the name of the DCL file to load.
If the file is located outside the AutoCAD library path, the specific directory path must
be included with the file name for the DCL file to load. Examples of this include:

(load_dialog “C:\\PROGRAMS\\HELLO.DCL”)

(load_dialog “C:/PROGRAMS/HELLO.DCL”)

AutoLISP adds a default file extension of .DCL to the file name if the file extension is
omitted. Other file extensions may be used as with .LSP files, but AutoLISP automati-
cally recognizes the .DCL extension.

When the DCL file is loaded successfully, a DCL identification number (a positive
integer) is returned. This number is incremented by one each time a DCL file is
successfully loaded. Setting this number to the variable DCL_ID allows AutoLISP to
access the DCL code. If the DCL file was not loaded successfully, the DCL identifica-
tion number is set to -1.

1-31

Activate the Dialog

After the dialog is loaded into memory, it must be activated. Next, type the code to call
the function new_dialog passing the name “hello” and DCL identification number,
DCL_ID, as arguments. This activates the dialog and exits if the dialog doesn’t load
correctly.

(if (not (new_dialog “hello” DCL_ID)) (exit))

NEW_DIALOG Function

This function activates the dialog name found within the DCL file indicated. You may
have more than one dialog definition within a single .DCL file. Use the
load_dialog function to load the main DCL file, while new_dialog calls the
specific dialog definition within the main DCL file. The syntax for new_dialog is:

(new_dialog DLGNAME DCL_ID [ACTION [SCREEN-PT]])

The DLGNAME argument is the name of the dialog definition within the DCL file.
This name must be typed exactly the same as it appears in the DCL file. If you use
uppercase characters you must use uppercase characters here.

DCL_ID is the DCL identification number assigned to the main DCL file loaded.
These are the two required arguments.

An optional ACTION argument may be added to execute a default AutoLISP expres-
sion and must be specified when the SCREEN-PT argument is present. The SCREEN-
PT argument is a 2D point list that specifies the upper-left corner of the dialog in
Windows. In DOS the point refers to the lower-left corner.

Add a blank line then type the next line of code to add the first action_tile
statement:

An action_tile statement defines what action is taken when a certain tile in the
dialog box is selected by the user. You associate an AutoLISP expression with the tile

1-32

Writing Your First Program

by calling the action_tile function. This first expression is associated with the
“Display Hello” button which has the attribute key value “cmd_hello.”

(action_tile “cmd_hello” “(CMD:HELLO)”)

When the user selects the “Display Hello” button, this executes the (CMD:HELLO)
subroutine as described and defined previously.

ACTION_TILE Function

Assigns an action for AutoLISP to execute when the user selects the specified tile in
the dialog box. The syntax for action_tile is:

(action_tile KEY ACTION-EXPRESSION)

The KEY argument is the attribute key value assigned to the tile that triggers the
action. The KEY argument is case sensitive and must match the attribute key value
assigned to the tile.

The ACTION-EXPRESSION argument is an AutoLISP expression presented as a
string by enclosing the entire expression in double quotes. If the AutoLISP expression
must contain quotation marks, precede each quotation mark with a backslash charac-
ter. The following expression shows an example of this:

(setvar “SNAPMODE” 0);;expression with quotation marks

(action_tile “tog_snap”
“(setvar \”SNAPMODE\” (atoi $value))”)

This expression refers to the tiles current value as $value. Additional tile values may
be obtained during program execution. Table 1.3 list the variable names used and their
descriptions:

1-33

Type the next line of code to add the second action_tile expression:

The second expression is associated with the CLEAR button using the attribute key
value “cmd_clear” .

(action_tile “cmd_clear” “(CMD:CLEAR)”)

Selecting this tile executes the (CMD:CLEAR) function as defined previously.

Add a blank line then type the next line of code to add the action_tile expression for
the OK button:

(action_tile “accept” “(done_dialog)”)

The final action expression is associated with the OK button using the key
“accept”. Selecting this tile executes the predefined (done_dialog) expres-
sion and closes the dialog.

Variable Name Description

$data Application specific data (as set by client_data_tile)

$key Key value attribute for the selected tile.

$reason Code indicating user action. Used with edit_box, list_box, image_button
and slider tiles.
1 = User selected tile
2 = User exited edit_box
3 = User changed value of slider
4 = User pressed enter when a list_box item was highlighted.

$value The current value of the tile as a string.

$x $y Point coordinates indicating the position the user picked on an
image_button tile.

Table 1.3. Action expression variables.

1-34

Writing Your First Program

DONE_DIALOG function

Once the user has completed the information requested within the various tiles of the
dialog, the current dialog must be dismissed. This is accomplished calling the
done_dialog function. The done_dialog syntax is:

(done_dialog [STATUS])

The predefined tiles OK and Cancel automatically issue a done_dialog when selected.
This returns the integer 1, if OK is selected, and 0 if Cancel is selected. An optional
[STATUS] argument may be supplied as the returned value instead of the standard 0
or 1. The [STATUS] value is returned by the start_dialog function when a variable
is assigned to the start_dialog function, as in this example:

(action_tile “cmd_line” “(done_dialog 5)”)

(setq DO_NEXT (start_dialog))

This code assigns the variable DO_NEXT to the value of 5 when the “cmd_line”
tile is selected by the user. Decisions can now be made by the program based on the
returned value of the DO_NEXT variable. Examples of this are explained in later
chapters.

Add a blank line and type the next line of code to display the dialog box:

(start_dialog)

This function uses no arguments. Values returned by start_dialog depend on the
done_dialog expression within the action_tile statement as explained above. The
dialog remains active until a done_dialog is called. Nested dialogs put the main dialog
on hold and reactivate it after they are closed.

Type the next line of code to unload the DCL file:

(unload_dialog DCL_ID)

1-35

This function prevents conflicts between tiles that reference previously defined tile
names.

Type the next line of code to add the princ function. Use a princ function to suppress
the nil returned after program execution:

(princ)

Type the final closing parenthesis to close the main defun of the HELLO program:

)//defun of hello

Type the next two lines of code to add a prompt to inform the user how the program is
executed:

(prompt “\nType < HELLO > to execute.”)
(princ)

Always add a prompt to inform the user how to execute the program. This prompt is
outside the closing parenthesis of the defun. When the program loads, this prompt is
displayed. To suppress the returned nil after the prompt, add the (princ) function
as the last line.

Save the code and exit the text editor. From within AutoCAD execute the HELLO
program.

Executing the Hello Program
The Hello program is completed. Use the following steps to execute the program from
within AutoCAD:

Use Appload to load the HELLO.LSP file.

Type HELLO at the AutoCAD command prompt to execute the program.

Click the Display Hello and Clear buttons to display and clear the text.

1-36

Writing Your First Program

You may use the Alt-D and Alt-C keys to set the focus to these buttons. After
the focus is set to the button press the enter key or space bar to execute the
button.

To exit and close the dialog press the OK button.

Note that the text displays inside the text tile when the Display Hello button is se-
lected. The clear button displays a blank text string when selected thus clearing the
text tile.

S u m m a r y
In this chapter you wrote your first custom Dialog Box program. You learned about
the steps necessary to write a Dialog Box program:

The visual DCL code programming step

The AutoLISP code programming step

In the visual programming step you created dialog box tile definitions within a .DCL
dialog definition file.

In the AutoLISP code programming step you created the program to control the dialog
tiles as they are selected by the user in the dialog box.

